Rigorous and Phenomenological Equations of State
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولPhenomenological Equations of State for the Quark-Gluon Plasma
Two phenomenological models describing an SU(N) quark-gluon plasma are presented. The first is obtained from high temperature expansions of the free energy of a massive gluon, while the second is derived by demanding color neutrality over a certain length scale. Each model has a single free parameter, exhibits behavior similar to lattice simulations over the range Td − 5Td, and has the correct ...
متن کاملPhenomenological Equations of State for SU(N) Gauge Theories
Two phenomenological models describing an SU(N) gluon plasma are presented using the eigenvalues of the Polyakov loop as the order parameters of the deconfinement transition. Each model has a single free parameter and exhibits behavior similar to lattice simulations over the range Td − 5Td. The N = 2 deconfinement transition is second order in both models, while N = 3,4, and 5 are first order. ...
متن کاملPhenomenological QCD equations of state for neutron star mergers
Thermal QCD equations of state at high baryon density are sensitive to the phase structure and the resulting excitation modes. The leading contribution at low temperature can be either ∼ pFT 2 (pF : quark Fermi momentum; T : temperature) for phases with gapless quarks, or ∼ T 4 for phases with gapped quarks. In the latter the thermal pressure is dominated by collective modes. Starting with a sc...
متن کاملSuperstability and rigorous asymptotics in singularly perturbed state-dependent delay-differential equations
We study the singularly perturbed state-dependent delay-differential equation εẋ(t) = −x(t)− kx(t− r), r = r(x(t)) = 1 + x(t), (∗) which is representative of a broader class of such equations of the form εẋ(t) = g(x(t), x(t− r)), r = r(x(t)). It is known that for every sufficiently small ε > 0, equation (∗) possesses at least one so-called slowly oscillating periodic solution, and moreover, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the International Astronomical Union
سال: 2008
ISSN: 1743-9213,1743-9221
DOI: 10.1017/s1743921308022369